3.3033 \(\int \frac{1}{(a+b (c x^n)^{2/n})^3} \, dx\)

Optimal. Leaf size=98 \[ \frac{3 x}{8 a^2 \left (a+b \left (c x^n\right )^{2/n}\right )}+\frac{3 x \left (c x^n\right )^{-1/n} \tan ^{-1}\left (\frac{\sqrt{b} \left (c x^n\right )^{\frac{1}{n}}}{\sqrt{a}}\right )}{8 a^{5/2} \sqrt{b}}+\frac{x}{4 a \left (a+b \left (c x^n\right )^{2/n}\right )^2} \]

[Out]

x/(4*a*(a + b*(c*x^n)^(2/n))^2) + (3*x)/(8*a^2*(a + b*(c*x^n)^(2/n))) + (3*x*ArcTan[(Sqrt[b]*(c*x^n)^n^(-1))/S
qrt[a]])/(8*a^(5/2)*Sqrt[b]*(c*x^n)^n^(-1))

________________________________________________________________________________________

Rubi [A]  time = 0.0343084, antiderivative size = 98, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.176, Rules used = {254, 199, 205} \[ \frac{3 x}{8 a^2 \left (a+b \left (c x^n\right )^{2/n}\right )}+\frac{3 x \left (c x^n\right )^{-1/n} \tan ^{-1}\left (\frac{\sqrt{b} \left (c x^n\right )^{\frac{1}{n}}}{\sqrt{a}}\right )}{8 a^{5/2} \sqrt{b}}+\frac{x}{4 a \left (a+b \left (c x^n\right )^{2/n}\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*(c*x^n)^(2/n))^(-3),x]

[Out]

x/(4*a*(a + b*(c*x^n)^(2/n))^2) + (3*x)/(8*a^2*(a + b*(c*x^n)^(2/n))) + (3*x*ArcTan[(Sqrt[b]*(c*x^n)^n^(-1))/S
qrt[a]])/(8*a^(5/2)*Sqrt[b]*(c*x^n)^n^(-1))

Rule 254

Int[((a_) + (b_.)*((c_.)*(x_)^(q_.))^(n_))^(p_.), x_Symbol] :> Dist[x/(c*x^q)^(1/q), Subst[Int[(a + b*x^(n*q))
^p, x], x, (c*x^q)^(1/q)], x] /; FreeQ[{a, b, c, n, p, q}, x] && IntegerQ[n*q] && NeQ[x, (c*x^q)^(1/q)]

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+b \left (c x^n\right )^{2/n}\right )^3} \, dx &=\left (x \left (c x^n\right )^{-1/n}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (a+b x^2\right )^3} \, dx,x,\left (c x^n\right )^{\frac{1}{n}}\right )\\ &=\frac{x}{4 a \left (a+b \left (c x^n\right )^{2/n}\right )^2}+\frac{\left (3 x \left (c x^n\right )^{-1/n}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (a+b x^2\right )^2} \, dx,x,\left (c x^n\right )^{\frac{1}{n}}\right )}{4 a}\\ &=\frac{x}{4 a \left (a+b \left (c x^n\right )^{2/n}\right )^2}+\frac{3 x}{8 a^2 \left (a+b \left (c x^n\right )^{2/n}\right )}+\frac{\left (3 x \left (c x^n\right )^{-1/n}\right ) \operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,\left (c x^n\right )^{\frac{1}{n}}\right )}{8 a^2}\\ &=\frac{x}{4 a \left (a+b \left (c x^n\right )^{2/n}\right )^2}+\frac{3 x}{8 a^2 \left (a+b \left (c x^n\right )^{2/n}\right )}+\frac{3 x \left (c x^n\right )^{-1/n} \tan ^{-1}\left (\frac{\sqrt{b} \left (c x^n\right )^{\frac{1}{n}}}{\sqrt{a}}\right )}{8 a^{5/2} \sqrt{b}}\\ \end{align*}

Mathematica [A]  time = 0.0965129, size = 91, normalized size = 0.93 \[ \frac{x \left (\frac{\sqrt{a} \left (5 a+3 b \left (c x^n\right )^{2/n}\right )}{\left (a+b \left (c x^n\right )^{2/n}\right )^2}+\frac{3 \left (c x^n\right )^{-1/n} \tan ^{-1}\left (\frac{\sqrt{b} \left (c x^n\right )^{\frac{1}{n}}}{\sqrt{a}}\right )}{\sqrt{b}}\right )}{8 a^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*(c*x^n)^(2/n))^(-3),x]

[Out]

(x*((Sqrt[a]*(5*a + 3*b*(c*x^n)^(2/n)))/(a + b*(c*x^n)^(2/n))^2 + (3*ArcTan[(Sqrt[b]*(c*x^n)^n^(-1))/Sqrt[a]])
/(Sqrt[b]*(c*x^n)^n^(-1))))/(8*a^(5/2))

________________________________________________________________________________________

Maple [F]  time = 0.356, size = 0, normalized size = 0. \begin{align*} \int \left ( a+b \left ( c{x}^{n} \right ) ^{2\,{n}^{-1}} \right ) ^{-3}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*(c*x^n)^(2/n))^3,x)

[Out]

int(1/(a+b*(c*x^n)^(2/n))^3,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{3 \, b c^{\frac{2}{n}} x{\left (x^{n}\right )}^{\frac{2}{n}} + 5 \, a x}{8 \,{\left (a^{2} b^{2} c^{\frac{4}{n}}{\left (x^{n}\right )}^{\frac{4}{n}} + 2 \, a^{3} b c^{\frac{2}{n}}{\left (x^{n}\right )}^{\frac{2}{n}} + a^{4}\right )}} + 3 \, \int \frac{1}{8 \,{\left (a^{2} b c^{\frac{2}{n}}{\left (x^{n}\right )}^{\frac{2}{n}} + a^{3}\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(c*x^n)^(2/n))^3,x, algorithm="maxima")

[Out]

1/8*(3*b*c^(2/n)*x*(x^n)^(2/n) + 5*a*x)/(a^2*b^2*c^(4/n)*(x^n)^(4/n) + 2*a^3*b*c^(2/n)*(x^n)^(2/n) + a^4) + 3*
integrate(1/8/(a^2*b*c^(2/n)*(x^n)^(2/n) + a^3), x)

________________________________________________________________________________________

Fricas [A]  time = 1.3972, size = 617, normalized size = 6.3 \begin{align*} \left [\frac{6 \, a b^{2} c^{\frac{4}{n}} x^{3} + 10 \, a^{2} b c^{\frac{2}{n}} x - 3 \,{\left (b^{2} c^{\frac{4}{n}} x^{4} + 2 \, a b c^{\frac{2}{n}} x^{2} + a^{2}\right )} \sqrt{-a b c^{\frac{2}{n}}} \log \left (\frac{b c^{\frac{2}{n}} x^{2} - 2 \, \sqrt{-a b c^{\frac{2}{n}}} x - a}{b c^{\frac{2}{n}} x^{2} + a}\right )}{16 \,{\left (a^{3} b^{3} c^{\frac{6}{n}} x^{4} + 2 \, a^{4} b^{2} c^{\frac{4}{n}} x^{2} + a^{5} b c^{\frac{2}{n}}\right )}}, \frac{3 \, a b^{2} c^{\frac{4}{n}} x^{3} + 5 \, a^{2} b c^{\frac{2}{n}} x + 3 \,{\left (b^{2} c^{\frac{4}{n}} x^{4} + 2 \, a b c^{\frac{2}{n}} x^{2} + a^{2}\right )} \sqrt{a b c^{\frac{2}{n}}} \arctan \left (\frac{\sqrt{a b c^{\frac{2}{n}}} x}{a}\right )}{8 \,{\left (a^{3} b^{3} c^{\frac{6}{n}} x^{4} + 2 \, a^{4} b^{2} c^{\frac{4}{n}} x^{2} + a^{5} b c^{\frac{2}{n}}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(c*x^n)^(2/n))^3,x, algorithm="fricas")

[Out]

[1/16*(6*a*b^2*c^(4/n)*x^3 + 10*a^2*b*c^(2/n)*x - 3*(b^2*c^(4/n)*x^4 + 2*a*b*c^(2/n)*x^2 + a^2)*sqrt(-a*b*c^(2
/n))*log((b*c^(2/n)*x^2 - 2*sqrt(-a*b*c^(2/n))*x - a)/(b*c^(2/n)*x^2 + a)))/(a^3*b^3*c^(6/n)*x^4 + 2*a^4*b^2*c
^(4/n)*x^2 + a^5*b*c^(2/n)), 1/8*(3*a*b^2*c^(4/n)*x^3 + 5*a^2*b*c^(2/n)*x + 3*(b^2*c^(4/n)*x^4 + 2*a*b*c^(2/n)
*x^2 + a^2)*sqrt(a*b*c^(2/n))*arctan(sqrt(a*b*c^(2/n))*x/a))/(a^3*b^3*c^(6/n)*x^4 + 2*a^4*b^2*c^(4/n)*x^2 + a^
5*b*c^(2/n))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b \left (c x^{n}\right )^{\frac{2}{n}}\right )^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(c*x**n)**(2/n))**3,x)

[Out]

Integral((a + b*(c*x**n)**(2/n))**(-3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (\left (c x^{n}\right )^{\frac{2}{n}} b + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(c*x^n)^(2/n))^3,x, algorithm="giac")

[Out]

integrate(((c*x^n)^(2/n)*b + a)^(-3), x)